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Extensive numerical results using finite-size-scaling methods for two-dimensional (2D) and three-
dimensional (3D) disordered systems are presented for eigenenergies E different from zero. Single-
parameter scaling law is satisfied for all of our resulis in both 2D and 3D systems. In 2D we find
only localized states, however, the localization length does not have its maximum at the band center.
In 3D, the dependence of the mobility edge on the strength of the diagonal order is obtained. These
results are found to be in satisfactory agreement with the predlctlons of the coherent-potentlal ap-

proximation and the potential-well analogy.

I. INTRODUCTION

In the last ten years a number of analytical! and numer-
ical techniques? have besn developed to study the prob-
lem of Anderson localization in disordered systems. In
spite of the extensive studies our ability to obtain explicit
quantitative results is limited. Recently an analogy of the
localization problem with that of a bound state in a poten-
tial well was developed3 through a diagrammatic analysis
of the conductivity* in the disordered systems. The analo-
gy with the potential well permits explicit calculations of
the localization lengths, conductlvmes, mobility edges
etc., from quantities that can be obtained from mean- f1e1d
theoncs, such as, the coherent-potential approximation®
(CPA). However, in order to check results of the approxi-
mate scheme outlined above [based on the CPA and the
potential-well analogy (PWA)], we need independent
methods of obtaining the same quantities. Up to now, the
most reliable approach is probably the strip or wire
method.>%—% In this method, one considers coupled one-
dimensional systems (1D). Each 1D system is described
by a tight-binding Hamiltonian of the form

H=73 |n)e,{n|+VZ |n)m]|, 1

where €, are independent random variables with a com-
mon probability distribution. In our explicit results, we
assume that the probability distribution is rectangular of
total width W. The corresponding sites of the nearest-
neighbors 1D system are coupled together by an inter-
chain matrix element. As the number of coupled chains
approaches infinity, we recover either the two-dimensional
(2D) system when the chains are placed on a plane with
two nearest neighbors each or the three-dimensional (3D)
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. system when they are placed to form a cylinder of square

cross section.

In this paper we examine the nature of eigenstates in
both 2D and 3D disordered systems with diagonal disor-
der by using an iterative method applied to very long
strips of finite width M combined with finite-size scaling
methods. In particular, we are interested in testing the
single parameter scaling theory’ for eigenenergies E dif-
ferent from zero. (Most of the numerical work®%~8 to
date has been done only for E —0.) We are interested also

- in checking how accurate the results obtained by an ap-

proximate scheme based on the coherent-potential approx-
imation and the potential-well analogy are. Our numeri-
cal results for 2D show, as is now well accepted, that all
eigenstates are exponentially localized. However, we find
that the localization length A as a function of energy for
constant disorder has a maximum not at E =0 as one
might expect but at Es£0. The exact value of energy at
which A has its maximum value depends on the amount
“of disorder. For 3D, we numerically calculate for the first

- time the mobility edge trajectory in the energy-disorder

plane for the tight-binding model. This trajectory is in

._good agreement with our previous prediction (see Fig. 5 of

Ref. 3) based on the PWA. Our numerical calculations of
* localizations length A and correlation length £ are in qual-
itative agreement with the results obtained from the
PWA. The quantity £, which characterizes the largest ex-
tent of the amplitude fluctuation of an extended eigen-
_function, can be defined from the relation kM =M 2/c§,
where Ay, is the largest localization length in a wire of

~ cross-section M2, and ¢ ~4.8 is a constant determined by

the requirement that & diverges in the same way as A near
the critical point. Finally, for the 3D case, we find that
finite-size scaling is obeyed for all E’s and W ’s in agree-
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ment with the scaling theory ideas of Abrahams ez al.’
For the 2D (3D) case, our system consists of M (M?)
regularly placed chains, of length N, each having two
(four) nearest neighbors. Then, one determines through a
rather sophisticated numerical technique®~? the largest lo-
calization length Ay for 2D (3D) systems with M (M?)
coupled chains, as N-» 0, respectively. The largest M
for which reliable numerical determination of A, has
been carried out is M =32 for 2D and M =8 for 3D.
One finds two distinct behaviors of the function A,
versus M. In the first case, which corresponds to a local-
ized state, the second derivate d?A, /dM? is negative and
A approaches a finite value A as M — o, where A is the
localization length of the resulting 2D (3D) disordered
system. In the second case, which corresponds to an ex-
tended state, d?Ay /dM? is positive and Apyy— o0 as
M. .

II. TWO-DIMENSIONAL RESULTS

MacKinnon and Kramer’ have studied numerically the
quantity Ay for the center of the band; E =0. They
found that the function A, versus M obeys a simple scal-
ing relation of the form

Ay A
B [ﬁ) ’ ?

where d is the dimensionality, and fy(x) is a universal
function of its argument. They also determined’ numeri-
cally the form of the function f;(x) and the dependence
of A on the disoder W. They found that f;(x) is an in-
creasing function of x with
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where obviously ¢ =1.

We calculated Ay (E, W) for d =2 and W =5 for ener-
gies in the range 1 <E <6 and M =2, 3, 6, 8, 16, and 32.
In agreement with the E =0 case, examined by MacKin-
non and Kramer,” we find that all of our results for Ay,
with E=50 tend to follow the one parameter scaling as-
sumption given by Eq. (2). In Fig. 1 we plot the scaling
function f,(x) obtained by MacKinnon and Kramer for
E =0 together with our points, which correspond to vari-
ous energies, disorders, and widths M. Although our
points are clustered around the MacKinnon-Kramer
curve, there is considerable dispersion due to numerical
errors, which are appreciable because we are dealing with
rather large A or A, in most of the cases. As a result of
these uncertainties, we estimate that our numerical results
for A plotted in Fig. 2(a) are no more accurate than
10—209% for large localization lengths. Near the tails
where A is small, the relative error is much lower, i.e.,
about 2%. This uncertainty could be reduced somehow at
the expense of increasing substantially the computer time.
(An error of about 2% in A,, requires the length N to be
10* times the localization length A,,.)

For E =0 we found A~110 which agrees within nu-
merical uncertainties with the values 110 and 97.58 ob-
tained by MacKinnon and Kramer in Ref. 7. Note that A
has a maximum at an energy different than zero. In par-

"ticular, for the case of W =5, A has a maximum at

E =2.0 and then drops rapidly as the energy E increases.
One might have expected that the states at £ =0 should
be less localized than the states at Es£0. We believe that
the local minimum of the localization length A at E =0
reflects the existence of Bloch states with zero group velo-
city at E =0 for the ordered square lattice. The vanishing

fa(x)—cx as x—0, (3} of the group velocity at E =0 is also responsible for the
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FIG. 1. Renormalized localization length Ap /M vs A/M for various values of disorder W/V and various energies E/V for a
square lattice. Solid line represents an average over the data points. There is only one branch in the universal curve, so all states are

exponential localized.



32 LOCALIZATION IN TWO- AND THREE-DIMENSIONAL . ..

T T T T T T T T T
200 | W .
v =50
X
100 _
{a)
0 L0 20 30 40 50
£V
T T T T T T T T T T
300}~ w ]
M.-s.0
v _
200 .
N i
100 n
(b)
1 M I _1_ ] | I
26 36 40 50

)

: E/V
FIG. 2. Localization length A (in units of lattice spacing)
versus energy E/V for a square lattice with disorder

W/V=5.0. (a) gives the numerical results while (b) gives the

results from the PWA with the CPA.

appearance of a Van Hove singularity in the density of
states at E =0 for the ordered lattice. Thus, the reduction
of the localization length at the neighborhood of E =0

can be attributed to the idea that it is easier to localize a

state with zero group velocity. This idea is supported also
by our previous calculations in simple-cubic lattices,’
where a local minimum appears both in the mean free
path and the conductivity near the Van Hove singularity
for weak disorder. We have also calculated the localiza-
tion length A by the PWA. and the CPA.. This is shown in
Fig. 2(b). To obtain these results, we have used the simple
expression for A derived previously® by the PWA,

A=2.721 exp(IS /4)=2.72] exp(7*Hoo/e?) , (4)

where [ is the mean free path, S is the area of the Fermi
surface, and o is the conductivity, all calculated within
the CPA. It is worthwhile to point out that Eq. (4), as op-
posed to the PWA, is valid for low disorder and that other
approaches, such as, the scaling method or the summation
of maximally crossed diagrams, produce the same ex-
ponential factor as in Eq. (4); however, the preexponential

factor is less certain. There are even suggestions that it is

not proportional to the mean free path /. In our previous
work, we have concluded that the prefactor 2.721 fits best
the numerical results of MacKinnon and Kramer’ for
E =0. Thus, it is interesting to see whether or not the
same formula [i.e., Eq. (4)] could fit results for other ener-
gies (and not so large a disorder). Comparison of Figs.
2(a) and 2(b) shows a rather reasonable agreement, al-
though Eq. (4) produces higher values of A near the max-
imum. However, the numerical results are less certain
near the maximum of A. Thus, we can conclude that Eq.
(4) gives a reasonable estimate of A. This reinforces our
opinion that the PWA is very useful in obtaining quanti-
tative results for various quantities of interest in disor-

.w._In the weak disorder limit ( W <<4V) and for E near
the perturbed band “edge” (but inside the band) the CPA
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dered systems. From Egq. (4) it is clear that the maximum
of A is essentially controlled by the maximum of o, In

W not so large) due to the Van Hove singularity and ap-
proaches zero linearly at the perturbed band edge. In be-

~ tween it must have a maximum, the position of which de-

pends on the disorder. This behavior of oy(E) fully ac-
counts for the behavior of A versus E as shown in Fig. 2.

. can be approximated by its lower-order expansion,

- w2 .
- e GE-3), 0
and Gy(E) by
_E
Gom ™ 152y | ()

" T where E =0 corresponds to the lower unperturbed band

edge. By combining Egs. (5) and (6) we find that the band
edge is shifted by an amount Ecp, given byw.

Econm 2 |In |2 | L
CPA™ Dany 16VerV | 2
~= w -1 )
= 24nV 69.466V | 2 |~

- The mean free path [ (in units of atomic spacing) can be
approximated by

] VI/Z
- 2 I Erl 1/2+ W/ 127TV)1/2
V¥UE' + | E' )/
. WZ

+24v72 , ©(8)

where E'=E —EcpA- Taking into account that the Fer-
mi line is given by (in units of atomic spacing)

S=2m(E' /W2, (9)
we obtain
e? 24 VE' ,
(4] % - WZ, E 0 (10)

Substituting Egs. (8) and (10) in Eq. (4) we obtain an ap-
proximate analytic expression for A,

A=2.72lexp (11)

2

2447 VE' ] .
|24

Equation (11) is in good agreement with the exact CPA
result for E near and inside the band edge even for
W =5V.

III. THREE-DIMENSIONAL RESULTS

For the 3D tight-binding model with diagonal disorder,

~ we calculated A, for several values of the eigenenergy E

and strength of the diagonal disorder W for M =2--7.
From our numerical data, we found that indeed the func-
tion Ay, versus M obeys the simple scaling relation in Eq.
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(2) for localized states, while the extended states follow a
different branch!® of the universal curve shown in Fig. 3.
We see from the upper branch of f3(x) (corresponding to
extended states) that A, /M increases with increasing M
and that Ay —>M?2/c& as M—> o, where £ is the correla-
tion length, ¢ ~4.8 (and x=§/M). For all of the cases
we examined the scaling function f3(x) for 3D has the
following form as x — oo

(12)

In the opposite limit x—0, fi(x)~1/x for extended
states [while for localized states f3(x)~x]. Using the
strip or wire method, we have calculated for the first time
the dependence of the mobility edge on the disorder W,
Fig. 4, for the 3D simple-cubic tight-binding model with
diagonal disorder. The points are the numerical results
while the solid line is the predictions® of the PWA com-
bined with the CPA. The thin solid line gives the CPA
band edge. The agreement between the numerical work
(which has an error of about 10%) and the PWA is very
impressive for the whole trajectory of the mobility edge.
The question of the determination of the mobility edge
trajectory has a long history. Initially, starting with
Anderson’s basic paper,!! the emphasis was to determine a
single point of the trajectory, namely, the one correspond-
ing to the center of the band (E =0, W,_). Estimated
values for W, /V for a simple-cubic lattice were covering
a wide range: 62 (Ref. 11), 32.6 (Ref. 12), 20—40 (Ref.
13), 22 (Ref. 14), <24 (Ref. 15), 14.5 (Ref. 16). The nu-
merical work of Weaire and Srivastava!” gave W, /V ~ 15,
while the most recent work of MacKinnon and Kramer
produced a value of W,/V =16.5+0.5. A result for the
whole trajectory was first obtained by Ziman,'? followed

fix)—=0.6 as x— w0 .
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FIG. 3. Renormalized localization length A, /M vs A/M or
£/M for various values of disorder W /¥ and various energies
E/V for a simple-cubic lattice. Solid lines represent an average
over the data points. There are branches in the universal curve,
the upper one corresponding to extended states and £/M and
the lower one to localized states and A/M. Thus, mobility edges
exist.
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FIG. 4. Dependence of the mobility edge on the strength of
the diagonal disorder W for the simple-cubic lattice. Solid tri-
angles are the numerical results. Thick solid line is the predic-
tion of the PWA with the CPA. The CPA band-edge trajectory
is also indicated (thin solid line) together with the true (Lifshitz)
band-edge trajectory {(thin dashed line). The dotted straight lines
indicate the independent variables for Fig. 5.

by Economou and Cohen,'* and by Licciardello and
Economou;!® the last two are based on the so-called L (E)
method. More recently, Prelovsek!® calculated the mobili-
ty edge trajectory based on an approximate treatment of
kinetic equations for electron density fluctuations; he
found a value of W,/V=10. Also, Kotov and Sa-
dovskii!® and Economou et al.’ obtained the mobility
edge trajectory based on a self-consistent diagrammatic
technique and the PWA, respectively. In these ap-
proaches there is an adjustable parameter of the order of
unity which in Ref. 3 was chosen to be 0.75 in order to
obtain W,./V =16.5.

The present numerical results clearly show that the
L (E) method of Licciardello and Economou'® and the
PWA? produce the best results for the mobility edge tra-
jectory. The L (E) method produces a mobility edge tra-
Jjectory exhibiting a slight minimum at the center of the
band (see Fig. 5 of Ref. 3) in disagreement with the nu-
merical data which show a slight maximum at the center
of the band; otherwise, the L (E) trajectory follows the
numerical points very faithfully. It is worthwhile to recall
that no adjustable parameter whatsoever is involved in the
L (E) method of Ref. 16. The PWA. is producing clearly
the best agreement with the data, which within numerical
uncertainty follow the PWA mobility edge trajectory
(thick solid line in Fig. 4). As it was shown recently,? the
mobility edge for low disorder follows the CPA. band edge
(being inside the latter by an amount proportional to W™%);
meanwhile the CPA band edge increases as W2 This ac-
counts for the original outgoing shape of the mobility
edge trajectory. For high disorders (comparable to
Anderson’s critical value) the density of states is deter-
mined more by the probability distribution rather than the
lattice structure and hence, is weakly varying over the
band (see Fig. 2 of Ref. 3). Other quantities such as the
dc conductivity o, and the mean free path [ are also
weakly dependent on the energy. The conclusion is that
at such high disorders all energies inside the band are al-
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most equivalent and as a result, the critical disorder
W.(E) is almost independent of the energy as long as the
latter is well within the band in agreement with the nu-
merical data and the results of the PWA or the L (E)
method.

In Fig. 5, we plot the localization length A or the corre-
lation length £ for two representative cases. In Fig. 5(a) A
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and & are plotted as a function of E for W =6V. Note .

that both A and £ diverge at an energy which gives the po-
sition of the mobility edge for that disorder. In Fig. 5(b),
A and £ are plotted as functions of W for E=7V. In this
particular case, A and £ diverge at two values of W. As
W is increased from zero for E =7V in Fig. 4, we enter
first a region of no states until we hit the true band-edge
trajectory (Lifshitz limit) for W =2V and we enter the ex-
treme tail region where the localization length A is very
small and the dens1ty of states exponentially small. The
density of states remains extremely low until we approach
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FIG. 5. (a) Localization length A or correlation length & as a
function of the energy E /¥ for a simple-cubic lattice with disor-
der W/V=6.0. The solid line is the result of the PWA with
the CPA. while the triangles are the numerical data. The CPA
band edge is just above the critical energy while the true band

edge (Lifshitz limit) is at E/V =9. (b) Localization length A or _

correlation length & versus the strength of the diagonal disorder
W/V for a simple-cubic lattice for energy E/V =7.0. The
solid line is the PWA result and the triangles are the numerical
data. The arrow indicates the position of the CPA band edge.
The true band edge (Lifshitz limit) is lower at W /V =2. Near
the lower critical point results have large uncertainties.
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the intersection with the CPA band trajectory Ecpa
[denoted by the arrow in Fig. 5(b)]; the Ecpa is a cross-
over energy where the density of states changes from an
exponential to an algebraic dependence. Very close to the
‘Ecpa is the first intersection with the mobility edge tra-
jectory at which the localization length A blows up as
shown in Fig. 5(b). For higher disorder, we enter a region
of extended states characterized by the correlation length

_&; the disorder dependence of the latter is shown in Fig.

5(b). Finally, as we keep increasing the disorder, we cross
again for a second time the mobility edge trajectory (see
Fig. 4); at this point & blows up again. Above this second
critical point the states are again localized and are charac-
terized by the localization length A, the disorder depen-
dence of which is shown in Fig. 5(b).

The results of the numerical work for A and &
(represented as triangles in Fig. 5) can be used to check re-
cently obtained formulas*?! for A and £. These formulas
were obtained by the PWA and by fitting to numerical re-
sults for E =0 as to determine the one adjustable parame-

T ter in the PWA approach. They are the following:

x:—f——Al_thl , (13)
1 6

27|ty &

g 5 oD } , (14)

~where ¢=S1%/(81?),, (SI*),=8.96, S is the constant ener-

gy surface, [ is the mean free path, 4=14.12, and

- B =2.20. Using the CPA to calculate S and [ for a given

‘pair of E and W and then substituting into Egs. (13) and
(14), explicit results for A and £ are obtained. Given the
numerical uncertainties of the wire method, and the fact
that there is no adjustable parameter in the PWA ap-
proach, the agreement in Fig. 5(a) is impressive. In Fig.
5(b) there are some discrepancies beiween the PWA re-
_sults and the numerical data. These discrepancies are at-
tributed to the larger numerical uncertainties in the wire
“method for large A and/or near the critical points. Espe-
cially near the lower critical point in Fig. 5(b) the uncer-
tainties in both the PWA and the wire method are larger,

* because we follow the line E/V =7 which crosses the mo-

bility edge trajectory at a very small angle (see Fig. 4) ex-
tending thus the critical region from W~6to W =~9.

IV. CONCLUSIONS

This paper demonstrates that the potential-well analogy
coupled with the CPA is capable of producing results for
quantities, such as, A and £ not only in qualitative but in
quantitative agreement with independent numerical data.
The discrepancies between the PWA based results and the
numerical data are about 10% or less, which is very satis-

" _factory. given the uncertainties in the numerical data

(which are themselves about 10%) and the previous ex-
perience in failing to produce reliable results out of vari-
ous approximate localization theories.

It must be pointed out that the PWA goes beyond the
so-called maximally crossed graphs (MCGQG) for the con-
ductivity in that it incorporates self-consistency.? Because
of this self-consistency it can describe not only the weak
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disorder case but the strong disorder case as well, where
the conductivity depends exponentially on the length of
the specimen. This possibility of describing the whole
range of disorder is a common feature of all self-
consistent approaches originated from the MCG. Because
there is no unique way for self-consistency, various self-
consistent, post-MCG approaches such as the PWA, the
Vollhardt and Wdlfle method,* and the Kotov and Sa-
dovskii work!? differ from each other. We think that the
PWA is, to date, the most successful self-consistent post-
MCG approach. We base this statement on (i) its concep-
tual simplicity and pedagodic values; (i) the fact that it
reproduces the exact analytical result for the conductivity
in the 1D case for all values of the disorder;?? and (iii) the
satisfactory quantitative agreement with independent nu-
merical data on the localization and correlation lengths A
and &, the conductivity o, and the mobility edge trajecto-
ry; this agreement was demonstrated in our previous
work>?! for E =0 (center of the band) and in the present
work for E+-0 both for two and three dimensions.

Based on the above successes, one can state that the cal-

culation of several important quantities in disordered sys- °
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tems has been reduced to the most elementary problems in
quantum mechanics: the gross features, such as, the den-
sity of states and the mean free path are obtained from an
effective uniform (or periodic) medium (determined from
the CPA condition); the more refined aspects due to fluc-
tuations around this effective medium, such as, localiza-
tion length, correlation length, position of the mobility
edge, and conductivity, are obtained by the simplest possi-
ble departure from uniformity, i.e., by a simple effective
potential well (which is again determined by the CPA).

ACKNOWLEDGMENTS

CM.S. is grateful for the hospitality of the Research
Center of Crete where part of this work was done. This
work was partially supported by a North Atlantic Treaty
Organization travel Grant No. RG684,/84. Ames Labora-
tory is operated for the United States Department of En-
ergy by Iowa State University under Contract No.
W-7405-Eng-82. This work was partially supported by a
Northwest Area Foundation Grant of Research Corpora-
tion.

ID. J. Thoules, in Anderson Localization, Vol. 39 of Springer
Series in Solid State Sciences, edited by Y. Nagaoka and H.
Fukoyama (Springer, New York, 1982), and references
therein.

2A. MacKinnon, in Anderson Localization, Vol. 39 of Springer
Series in Solid State Sciences, Ref. 1.

3E. N. Economou and C. M. Soukoulis, Phys. Rev. B 28, 1093
(1983); E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis,
ibid. 30, 1686 (1984).

4D. Vollhardt and P. Wélfle, Phys. Rev. Lett. 48, 699 (1982);
Phys. Rev. B 22, 4666 (1980).

SE. N. Bconomou, Green’s Functions in Quantum Physics, 2nd

ed. (Springer, Heidelberg, 1983).

3. L. Pichard and G. Sarma, J. Phys. C 14, L127 (1981); 14,
L617 (1981).

7A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983); Phys.
Rev. Lett. 47, 1546 (1981); 49, 695 (1982).

8C. M. Soukoulis, I. Webman, G. S. Grest, and E. N.
Economou, Phys. Rev. B 26, 1838 (1982).

9E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

10D, J. Thouless and M. E. Elzain, J. Phys. C 11, 3425 (1978).

1P, W, Anderson, Phys. Rev. 109, 1492 (1958).

125, M. Ziman, J. Phys. C 2, 1230 {1969).

I3D. C. Herbert and R. Jones, J. Phys. C 4, 1145 (1971).

14E. N. Economou and M. H. Cohen, Phys. Rev. Lett. 25, 1445
(1970); Phys. Rev. B 5, 2931 (1972).

15K Schénhammer and W. Brenig, Phys. Lett. 42A, 447 (1972).

16D, C. Licciardello and E. N. Economou, Phys. Rev. B 11,
3697 (1975).

17D, Weaire and V. Srivastava, J. Phys. C 10, 3209 (1977).

18p, Prelovsek, Phys. Rev. B 23, 1304 (1981).

9E. A. Kotov and M. V. Sadovskii, Z. Phys. B 51, 17 (1983).

20E. N. Economou, C. M. Soukoulis, M. H. Cohen, and A. D.
Zdetsis, Phys. Rev. B 31, 6172 (1985).

21E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis, Phys.
Rev. B 31, 6483 (1985).

22E. N. Economou, Phys. Rev. B 31, 7710 (1985).



